
1

Controllability and Falsification
of Hybrid Systems

Pieter Collins†

†Centrum Wiskunde en Informatica,
Postbus 94079, 1090 GB Amsterdam, The Netherlands,

Pieter.Collins@cwi.nl

Abstract— In this paper we consider the controllability
problem for hybrid systems, namely that of determining
the set of states which can be driven into a given
target set. We show that given a suitable definition of
controllability, we can effectively compute arbitrarily
accurate under-approximations to the controllable set
using Turing machines. However, due to grazing or
sliding along guard sets, we see that it may be able to
demonstrate that an initial state can be controlled to the
target set, without knowing any trajectory which solves
the problem.

Index Terms— Hybrid system; controllable set; com-
putable analysis; safety.

AMS subject classifications. 93B03; 93-04, 68Q17,
93B40.

I. INTRODUCTION

In this paper we consider the problem of comput-
ing the controllable set of a general nonlinear hybrid
system. We restrict to hybrid systems without noise,
but some nondeterminism still unavoidably enters the
analysis due to difficulties in computing whether and
when a discrete transition should take place.

This controllability problem is dual to the safety
problem for noisy closed-loop systems, but harder
since we have to simultaneously deal with choice and
nondeterminism, whereas for safety we deal only with
with nondeterminism. We see that a forwards approach
to controllability is complicated by the need to consider
sets of possible jump times, leading to multiple possi-
bilities for further evolution which must be considered
separately. Instead, a backwards approach yields a
simple high-level algorithm which can still be imple-
mented. The problem of computing the controllable set
is equivalent to computing the unsafe set for a closed-
loop system with nondeterministic noise. For we can
consider the nondeterministic noise as the input of the

This research was supported by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO) Vidi grant 639.032.408.

“environment”, and showing that a state is unsafe is
equivalent to showing that the environment can guide
the state into the unsafe set.

Over-approximations to reachable sets of hybrid sys-
tems for safety verification can be computed using
various tools, including [1], [2], [3], [4], [5], [6] using
a forwards analysis. For the controllability problem,
when using a forwards analysis, we need to show
that the target can be reached from all points in the
initial state set. For these reasons, backwards analysis
methods based on dynamical programming are usually
preferable. A comparison of forwards and backwards
for reachability methods including a discussing of
numerical issues is given in [7].

Since the behaviour nonlinear hybrid systems can
be extremely complicated, it is unclear whether it is
even possible to compute the controllable set in all
cases. Further, since we deal with objects in continous
spaces, it is not even clean how we should describe such
objects, and what the meaning of a valid computation
should be. To solve these difficulties, we therefore use
a framework of computable analysis, which provides a
formal theory of computation on objects in continuous
spaces, including concrete machine representations of
fundamental types, a basic collection of effectively
computable operators on these types, and conditions
under which a function or operator is uncomputable.

The theory is based on topology and analysis, and
the concrete representations of objects in a space
correspond to topologies in the space. The funda-
mental result is that only continuous operators can
be computable. If an operator is uncomputable, then
we can see if it becomes computable using different
representations, which correspond to strengthening the
input data or weakening the requirements on the output.

There are many approaches to computable analysis,
including domain theory [8], locale theory [9] and
type-two effectivity [10]. However, all yield equivalent
representations and the same computable operators. In



2

this paper, we shall therefore only list the classes of ob-
jects which we need to work with, and the computable
operations, and mostly omit details of how objects are
represented and which operations are computable.

It should be noted that computable analysis is a
framework for defining approximate numerical com-
putations with nonzero errors but known error bounds.
This means that some problems which are solvable in
an exact algebraic framework become unsolvable in
computable analysis. However, typically only specific
instances become solvable in the algebraic setting, and
general problem remains unsolvable. In the computable
analysis setting, solvability is intimately related to
robustness, and we have the advantage of a richer class
of computable operators to work with. Computable
analysis has the advantage over traditional numerical
analysis in that we can write algorithms using high-
level operations which have been shown to be com-
putable, rather than try to work explicitly with error
bounds and epsilon-delta style proofs.

In this paper, as well as the familiar collection of
open subsets, we also make use of the hyperspace of
overt subsets. An overt set is a closed set represented
by listing the open boxes it intersects, or equivalently,
by a dense sequence of points. Overt-valued maps are
ideal for describing control systems, since we have
precisely enough information to determine whether an
initial point can be controlled into an open target set.

The main contribution of this paper is that we give
a notion of robustly controllable set which can be
effectively computed, and an algorithm for performing
the computation. We also show that in certain cases, the
controllable set cannot be computed, but that our algo-
rithm gives an under-approximation which is in some
sense optimal. A weaker notion of robust controllability
was given in [11].

The paper is organised as follows. In Section II
we give a minimal definition of a hybrid system and
describe its solutions. In Section III, we sketch the
results from computable analysis which we need. In
Section IV, we show that the controllable set varies
discontinuously in system parameters as a result of
discontinuities in the system evolution. In Section V,
we show that the controllable set can be computed
given the correct definitions. We give some conclusions
and suggestions for further research in Section VI.

II. HYBRID SYSTEMS

A hybrid system is a system in which continuous
evolution is interspersed with discrete transitions at
which the state jumps discontinuously. There are many
hybrid system models in the literature; in this paper we

choose a framework which is general enough to exhibit
the difficulties which may occur and how these can be
adressed, without introducing additional complications.

Definition 2.1: A hybrid system is a tuple H =
(X,E,Φ, {De, Ae, Re | e ∈ E}) where X is the state
space, E is a set of events, Φ : X ⇒ C(R+, X)
is a multivalued flow giving the system dynamic, and
for each event e ∈ E, Ae is the set in which e is
active, De is the set in which e can be delayed and
and Re : X ⇒ X is the reset map.
Intuitively, the system state x may evolve according to
the continuous dynamics Φ as long as for every event
e ∈ E, we have x ∈ De. The system may make jump
according to the event e if x ∈ Ae. We allow for the
case that at a given state x, both continuous and discrete
dynamics are possible.

The arrows ⇒ indicate that the functions Φ and
Re are multivalued, which takes into account the pos-
sibility of being able to choose different continuous
dynamics or resets from a given point. We assume that
Φ and Re are everywhere-defined.

Notice that in the definition there is no explicit
mention of discrete states. However, we can think of
the state space X as being the disjoint union of spaces
Xq for q ∈ Q, where Q is a finite set of discrete states.
Also, rather than a global invariant, we instead give,
for each event e, a set De such that event e will occur
if the system is about to leave the set De.

To formally represent a trajectory of a hybrid system,
we need to take into account the possibility that more
than one discrete transition occurs at a given time. To
capture the intermediate states, we use the following
definition of hybrid time domain [12], [13], which is
based on work of [14]:

Definition 2.2 (Hybrid trajectory): Let (tn)n<∞ be
an increasing sequence in R+∪{∞} with t0 = 0. Then
the tn define a hybrid time domain T ⊂ R+ × Z+ by

T = {(t, n) ∈ R+ × Z+ | tn 6 t 6 tn+1}

A hybrid trajectory is a continuous function ξ : T → X
for some hybrid time domain T . The trajectory ξ is
Zeno if limn→∞ tn <∞, and infinite otherwise.
We define the solutions of a hybrid system as hybrid
trajectories.

Definition 2.3 (Solution of a hybrid system): A hy-
brid trajectory is a solution or execution of the hybrid
system H = (X,E,Φ, {De, Ae, Re}) if there is a
sequence of events en such that

1) ξ(t, n) ∈
⋂
e∈E De whenever tn 6 t < tn+1,

2) ξ(·, n) ∈ Φ(ξ(tn, n)),
3) ξ(tn, n−1) ∈ Aen

, and
4) ξ(tn, n) ∈ Ren

(ξ(tn, n−1)).



3

Condition 1 means that continuous evolution is only
possible at x if x ∈ De for all e ∈ E, though the state
may leave

⋂
e∈E De at the time of an event. Condition 3

means that event e can only occur if x ∈ Ae.
In order to ensure that the system is non-blocking,

we make the following key assumption:
Assumption 2.4 (Non-blocking): For every event e,

we have D◦e ∪Ae = X .
This assumption is natural in the sense that an event
cannot block continuous evolution if it is not active.
We need to take the interior of De since the formal
semantics prohibits event e at a point x 6∈ Ae even if
x ∈ ∂Ae. We note that if D◦e ∪A◦e = X , then the event
time is nondeterministic, whereas if D◦e ∩A◦e = ∅, then
the event e occurs as soon as the state touches ∂Ae.

III. COMPUTABLE ANALYSIS

We now outline how to describe objects such as
points, sets and functions in the framework of com-
putable analysis. In this article we use a higher-level
form loosely based on type theory or lambda calcu-
lus rather than the low-level foundational approaches.
Much of the material in this section can be found
in [10], [15]. We say that a representation of a type is a
way of describing objects of that type by infinite binary
streams, and a name of an object is a stream describing
it. In a topological space, we consider representations
which are admissible with respect to the topology,
which means that the names can be interpreted as giv-
ing increasingly accurate approximations to the object.
An operation f : X → Y between types is computable
if it is possible to write a program on a digital computer
(as modelled by a Turing machine) transforming any
name of an object x in X to a name of f(x) in Y .

We consider a state space X , which can be taken
as any locally-compact second countable Hausdorff
spacee. In Euclidean space, we can describe a point
x as a monotone intersection of open rational boxes.

We will be interested in the hyperspaces of open and
overt subsets of X , denoted O and V respectively. We
can describe an open set U as a countable union of
compact rational boxes, and an overt set A by listing
all open rational boxes intersecting A. If A is overt and
U is open, we can prove that A intersects U by finding
a rational box I such that A ∩ I 6= ∅ and I ⊂ U . If
A is overt, then given ε > 0 we can compute ε-lower
approximations to A, by which we mean concrete sets
B (described as unions of boxes) such that B ⊂ Nε(A).
The space of closed subsets of X with the lower Fell
topology is equivalent to our overt sets; for a more
detailed description of overtness, see [16], [17].

Theorem 3.1: We have the following computable
operations on sets:
• Finite intersection O ×O → O.
• Countable union ON → O.

and the following computable predicates:
• intersection A∩U 6= ∅ as a function V ×O → S,

where S is the Sierpinski space {>, ↑}.
We now consder the space of continuous functions

X → Y . If X is a locally-compact Hausdorff space,
we use the compact-open topology on C(X,Y ), which
is generated by the sets

β(K,U) = {f ∈ C(X,Y ) | f(K) ⊂ U} (1)

for compact K and open U . If f : X → Y is continous
and x ∈ X , then we can effectively evaluate f(x)
from names of f and x in the corresponding admissible
representations.

We also wish to consder multivalued functions X ⇒
Y , in particular, functions X → V(Y ).

Theorem 3.2: Let F : X → V(Y ) an overt function.
Then if A ⊂ X is overt and V ⊂ Y is open, we can
compute F (A) ∈ V(Y ) and F−1(V ) ∈ O(X) from
names of F , A and V .
In other words, if we can compute the image of a point
as an overt set, then we can compute the image of any
overt set, or the preimage of any open set. The condi-
tion on the preimages says that the effectively lower-
semicontinuous closed-valued functions are precisely
the overt functions.

We now consider continuous-time evolution. Recall
that a flow is a function φ : X × R → X , such that
(i) φ(x, 0) = x for all x ∈ X and (ii) φ(x, s + t) =
φ(φ(x, s), t) for all x ∈ X and s, t ∈ R. A flow
satisfies the differential equation ẋ = f(x) if φ̇(x, t) =
f(φ(x, t)) for all x, t. Equivalently, we can also think
of a flow as a function φ̂ : X → C(R, X) such that
ξ = φ̂(x) if ξ(0) = x and ξ(t) = φ(x, t).

Analogously, a multivalued flow is a function Φ :
X ⇒ C(R, X) which satisfies the multiflow conditions
(i) ξ(0) = x for all ξ ∈ Φ(x), (ii) if ξ ∈ Φ(x), then the
function η defined by η(t) = ξ(t+s) is in Φ(ξ(s)), and
(iii) if ξ ∈ Φ(x) and η ∈ Φ(ξ(s)), then the function ζ
given by ζ(t) = ξ(t) for t 6 s and ζ(t) = η(t− s) for
t > s is in Φ(x).

A multivalued flow is overt if it is continuous as a
function X → V(C(R, X)). From Theorem 3.2, we
immediately deduce:

Corollary 3.3: If Φ is an overt flow, K a compact
interval and U is open, then

Φ−1
(
{η | η(K) ⊂ U}

)
= {x ∈ X | ∃ ξ ∈ Φ(x) s.t. ξ(K) ⊂ U}



4

is an open subset of X , and can be computed from
names of Φ, K and U .

We can generate multivalued flows by differential
inclusions ẋ ∈ F (x). In this paper, we work directly
with flows, and do not consider explicitly consider
differentiable formalisms of the continuous dynamics.
This is actually no restriction, since the solution of a
locally Lipschitz continuous differential inclusion was
shown to be effectively computable (using different
terminology) in [18]. We can refine this result and
consider only lower-semicomputability.

Theorem 3.4 (Differential inclusions): Denote by
Φ : X ⇒ C(R, X) the flow of the differential inclusion
ẋ ∈ F (x). If F is overt locally Lipschitz with convex
values, then the solution operator flow Φ is overt, and
can be effectively computed from a name of F .

IV. NONDETERMINISTIC BEHAVIOUR AT

DISCONTINUITIES

In this section we consider discontinuities caused by
the discrete events in the evolution of a hybrid system.

Definition 4.1 (Controllability): A hybrid system H
is controllable from x0 to T ⊂ X if there exists a
solution ξ of H , t ∈ R+ and n ∈ Z+ such that
ξ(0, 0) = x0 and ξ(t, n) ∈ T .

A system H is robustly controllable from x0 to T if
for any sufficiently small perturbations x′0 of x0, T ′ of
T and H ′ of H , the system H ′ is controllable from x′0
to T ′.

Example 4.2: Consider a hybrid system on R with
flow ẋ = −1, and a single event with D = (0,∞],
A = [−∞, 0]) and reset x′ = x+3. Then the system is
controllable from x0 = 1 to T = (2, 4) since the hybrid
trajectory ξ(t, 0) = 1− t for t ∈ [0, 1] and ξ(1, 1) = 3
is a solution. However the perturbed system H ′ with
A′ = [−∞,−ε] for ε > 0 is blocking at state x = 0,
since no any trajectory must leave D′ before entering
A′. Hence H ′ is not controllable.
The system H ′ in the above example does not satisfy
the Assumption 2.4. This shows that the non-blocking
assumption D ∪A = X is not a topological condition,
but a logical condition on the flow, and that a numerical
approach to computing the system evolution without
explicitly considering this non-blocking assumption
will necessarily fail.

Example 4.3: Consider a hybrid system with state
space R2, flow ẋ = 1, ẏ = α, activation A = {(x, y) |
y > x2}, delay set D = R2\A and reset (x′, y′) = (x+
2, y+ β). Suppose the initial state is p0 = (−1, 0) and
the target set T is {(x, y) | (x−2)2 +(y−γ)2 6 1/2}.
Then if α = 0 and γ = β = 1, the continuous evolution

touches the guard set G = ∂A at p1 = (0, 0) when
t = 1 and jumps to p2 = (2, 1) in T . Now suppose
that there is a small negative drift of y in the flow, so
α ∈ (−ε, 0). Then the continuous evolution misses the
guard set and so misses the target. The system is not
robustly controllable.

Now suppose γ = β = 0. Then for α ∈ [0, ε) the
continuous evolution hits the guard set at p1 ≈ (0, 0)
and jumps to p2 ≈ (2, 0) in T . For α ∈ (−ε, 0),
the continuous evolution misses the guard set, but
continues to reach the target set at p3 = (2, 3α). Hence
the system is robustly controllable from x0 to T , even
though we cannot say which path it follows.

The above example illustrates that discontinuity
points of the evolution, such as points of tangential
grazing with guard sets, can cause non-robustness of
the controllable set, and hence that it may not be possi-
ble to compute the controllable set using approximative
numerical methods. The difficulty is that there are two
possibilities for the evolution, either an event occurs or
an event does not occur, and due to numerical errors
we cannot determine which. We need to consider both
possibilities, and can only deduce that the system is
controllable if we can continue from both eventualities
to the target set.

Let us now consider how we might perform forwards
reachability analysis from an initial state. Due to nu-
merical error, we may encounter points for which we
cannot determine whether an event occurs in the model
or not, and if so, which event does occur. Notice that
this numerical nondeterminism, on which we have no
control, is different from the system nondeterminism,
which we assume can be controlled by user input. We
therefore consider all possible cases, and only say that
a point is controllable if the target can be reached
in all possible continuations. It may even be the case
that the evolution slides along the common boundary
of De and Ae for some event e, before entering A◦e,
in which case we have a compact set of possibilities,
each corresponding to a different event time. Since
we have to consider all possible different qualitative
behaviours, possibly infinitely many, and show that for
each the system could be controlled into the target set,
the procedure for controllability is quite complicated.
It turns out that it is easier to analyse the system using
a backwards analysis.

V. COMPUTABILITY OF THE CONTROLLABLE SET

In this section, we compute the set of points which
can be robustly controlled into a target set by a re-
cursive backwards construction. The construction is



5

based on the one-step controllable set, which contains
all points which can be controlled into T either by
purely continuous evolution, or by continuous evolution
followed by a single jump.

Definition 5.1: Let T ⊂ X be an open target set. We
say that x is one-step controllable into T if there exists
a continuous trajectory η with η(0) = x such that
1) η(t) ∈

⋂
e∈E De for all t ∈ [0, τ), and

2) η(τ) ∈ T ∪
(⋃

e∈E(Ae ∩R−1
e (T ))

)
.

It is clear that the controllable set C can be written
as C =

⋃∞
n=0Cn, where C0 is the continuously

controllable set and Cn+1 is the one-step controllable
set for Cn.

When trying to prove numerically that a point x is
one-step controllable into T , we need to consider a
robust verision of the one-step controllable set, which
involves taking the interiors of the sets De and Ae,
and also checking the invariant at time t = τ . The
conditions for one-step controllability become
1) η(t) ∈

⋂
e∈E D

◦
e for all t ∈ [0, τ ], and.

2) η(τ) ∈ T ∪
⋃
e∈E(A◦e ∩R−1

e (T ))).
Unfortunately, this presents us with a problem. For if
e is an urgent event, by which we mean De = X \
Ae, then D◦e ∩ A◦e = ∅, so any continuous trajectory
entering A◦e must first leave D◦e , which is forbidden by
Definition 2.3. If, on the other hand, De and Ae are
open for all e, then the robustly controllable set and
the one-step controllable set are equal.

In order to solve the problem, we use the conditions
of Assumption 2.4 to analyse the defining formula
for the controllable set before passing to the robust
interpretation. Suppose x is one-step controllable into
T due to an event which occurs at time τ . Then

∀t ∈ [0, τ), η(t) ∈
⋂
e∈E De

However, x is also one-step controllable into T if an
event occurs at time t < τ for which we can jump into
T . Hence we can weaken the controllability condition
to

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E De

)
∪
(⋃

e∈E(Ae∩R−1
e (T ))

)
.

By taking the sets Ae∪R−1
e (T ) into the first set in the

above formula, we have

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E(De ∪ (Ae ∩R−1
e (T )))

)
∪
(⋃

e∈E(Ae ∩R−1
e (T ))

)
.

Now since De ∪Ae = X , we have

De ∪ (Ae ∩R−1
e (T )) = (De ∪Ae)∩ (De ∪R−1

e (T ))

= X ∩ (De ∪R−1
e (T )) = De ∪R−1

e (T ).

Hence the flow condition 1) is equivalent to

∀t ∈ [0, τ), η(t) ∈
(⋂

e∈E(De ∪R−1
e (T ))

)
∪
(⋃

e∈E(Ae ∩R−1
e (T ))

)
.

Taking a robust version of this predicate gives

∀t ∈ [0, τ ], η(t) ∈
(⋂

e∈E(D◦e ∪R−1
e (T ))

)
∪
(⋃

e∈E(A◦e ∩R−1
e (T ))

)
.

At the final time, the robust variant of 2) is

η(τ) ∈ T ∪
(⋃

e∈E(A◦e ∩R−1
e (T ))

)
.

Note that the improvement in the condition for being
controllable occurs only in the robust version, and not
in the formal version.

Definition 5.2: Let T ⊂ X be an open target set.
We say that x is robustly one-step controllable into T
if there exists a continuous trajectory η with η(0) = x
such that

1) η(t) ∈
⋂
e∈E(D◦e ∪R−1

e (T )) for all t ∈ [0, τ ], and
2) η(τ) ∈ T ∪

(⋃
e∈E A

◦ ∩R−1(T ))
)
.

Note that we take R−1
e (T ) in the whole space X ,

and not just in the set of points for which an action
is possible. This is in order to keep the sets open, and
does not cause any difficulties since if no transition is
possible at a time t, then the conditions ensure that
either a transition is possible at some time t′ > t, or
that the target may be reached without transitions.

Theorem 5.3 (Robustly controllable set): Let H =
(X,E,Φ, {De, Ae, Re | e ∈ E}) be a hybrid system
such that Φ is an overt multiflow and the Re are overt
multimaps. Suppose further that D◦e ∪ Ae = X for all
e, so the system is non-blocking. Let T be an open set.
Then the robustly controllable set C is an open set, and
can be effectively computed from names of T , Φ, Re,
D◦e and A◦e.

Proof: Let C0 be the set of points which are
continuously controllable into T , and Cn+1 be the
set of points which are one-step controllable into Cn.
Note that trivially, every point of Cn is single-step
controllable into Cn.

To show that C0 is effectively computable we write

C0 =
{
x ∈ X | ∃η ∈ Φ(x), τ ∈ Q+ s.t. η(τ) ∈ T

and η([0, τ ]) ⊂
⋂
e∈E D

◦
e

}
=
⋃
τ∈Q+Φ−1

(
β({τ}, T ) ∩ β([0, τ ],

⋂
e∈E D

◦
e)
)

where β(K,U) is given in (1). Now for I a compact
interval with rational endpoints, in R, and J a basic
open subset of X , the set β(I, J) = {η : R → X |
η(I) ⊂ J} is a basic open subset of C(R;X). Since
Φ is overt-valued and computable, the set Φ−1(U) is



6

computable for any computable open U ⊂ C(R;X).
Hence C0 is computable, since it can be obtained by
applying computable operations to computable objects.

To show Cn+1 is effectively computable we write
Cn+1 = {x ∈ X | ∃η ∈ Φ(x), τ ∈ Q+

s.t. η(τ) ∈
⋃
e∈E(A◦e ∩R−1

e (Cn))

and η([0, τ ]) ⊂
⋂
e∈E(D◦e ∪R−1

e (Cn))

=
⋃
τ∈Q+Φ−1

(
β({τ},

⋃
e∈E(A◦e ∩R−1

e (Cn)))

∩ β([0, τ ],
⋂
e∈E(D◦e ∪R−1

e (Cn)))
)
,

expressing Cn+1 in terms of computable operations on
computable objects.

The result follows since C =
⋃∞
n=0Cn and count-

able union of open sets is computable.
Since the above proof gives an explicit formula for
the robustly controllable set in terms of computable
operations, we have an algorithm for computing this
set which can in principle be effectively implemented
(though highly non-trivial to implement efficiently). If
the sets De and Ae are open we immediately obtain:

Theorem 5.4 (Interior controllable set): Let H =
(X,E,Φ, {De, Ae, Re | e ∈ E}) be a hybrid system
such that Φ is an overt multiflow, the Re are overt
multimaps, and the De and Ae are open sets. Suppose
further that De∪Ae = X for all e, so the system is non-
blocking. Let T be an open set. Then the controllable
set equals the robustly controllable set, so is an open
set, and can be effectively computed from names of T ,
Φ, Re, De and Ae.

VI. CONCLUDING REMARKS

We have considered the effective computability of
controllable sets for a hybrid system using techniques
from computable analysis. We have seen that conver-
gent under-approximations to the robustly controllable
set can be computed from the system data, and that for
some systems, the robustly controllable set equals the
controllable set. The algorithm is based on a backwards
computation of the controllable set, and is easy to write
down in terms of fundamental computable operations.
The algorithm can also be seen as computing the set
of unsafe initial states of a closed-loop hybrid system
with nondeterministic noise.

In further research, we plan to give an implementa-
tion of the algorithm within the hybrid systems analysis
tool Ariadne. This will extend the existing functionality
for reachability analysis and safety verification.

REFERENCES

[1] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Hytech: A
model checker for hybrid systems,” in CAV ’97: Proceedings
of the 9th International Conference on Computer Aided Veri-
fication. London, UK: Springer-Verlag, 1997, pp. 460–463.

[2] T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-
Toi, “Beyond hytech: Hybrid systems analysis using interval
numerical methods,” in Hybrid Systems: Computation and
Control, ser. Lecture Notes in Computer Science, N. Lynch
and B. Krogh, Eds., no. 1790. Berlin Heidelberg New York:
Springer-Verlag, 2000, pp. 130–144.

[3] E. Asarin, T. Dang, and O. Maler, “d/dt: A verification tool for
hybrid systems,” in Proceedings of the 40th IEEE Conference
on Decision and Control. New York: IEEE Press, 2001.

[4] B. K. B. Izaias Silva, Keith Richeson and A. Chutinan,
“Modeling and verification of hybrid dynamical system using
CheckMate,” in Proceedings of the 4th International Confer-
ence on Automation of Mixed Processes, 2000, pp. 189–194.

[5] G. Frehse, “Phaver: Algorithmic verification of hybrid systems
past hytech.” in Hybrid Systems: Computation and Control,
ser. Lecture Notes in Computer Science, M. Morari and
L. Thiele, Eds., vol. 3414. Springer, 2005, pp. 258–273.

[6] A. M. Bayen, E. Crück, and C. Tomlin, “Guaranteed over-
approximations of unsafe sets for continuous and hybrid
systems: Solving the hamilton-jacobi equation using viabil-
ity techniques,” in HSCC, ser. Lecture Notes in Computer
Science, C. Tomlin and M. R. Greenstreet, Eds., vol. 2289.
Springer, 2002, pp. 90–104.

[7] I. M. Mitchell, “Comparing forward and backward reachabil-
ity as tools for safety analysis,” in Hybrid systems: computa-
tion and control, ser. Lecture Notes in Comput. Sci. Berlin:
Springer, 2007, vol. 4416, pp. 428–443.

[8] D. S. Scott, “Domains for denotational semantics,” in Au-
tomata, languages and programming (Aarhus, 1982), ser.
Lecture Notes in Comput. Sci. Berlin: Springer, 1982, vol.
140, pp. 577–613.

[9] S. Vickers, Topology via logic, ser. Cambridge Tracts in Theo-
retical Computer Science. Cambridge: Cambridge University
Press, 1989, vol. 5.

[10] K. Weihrauch, Computable analysis, ser. Texts in Theoretical
Computer Science. An EATCS Series. Berlin: Springer-
Verlag, 2000, an introduction.

[11] P. Collins, “Semantics and computability of the evolution
of hybrid systems,” Centrum voor Wiskunde en Informatica,
Tech. Rep., 2008, CWI Report MAS-R0801.

[12] ——, “A trajectory-space approach to hybrid systems,” in Pro-
ceedings of the International Symposium on the Mathematical
Theory of Networks and Systems, Katholiek Univ. Leuven,
Belgium., August 2004, 2004.

[13] R. Goebel, J. Hespanha, A. R. Teel, C. Cai, and R. Sanfelice,
“Hybrid systems: Generalized solutions and robust stability,”
in Proceedings of the Symposium on Nonlinear Control Sys-
tems. Elsevier, 2004.

[14] J. Lygeros, K. H. Johansson, S. Sastry, and M. Egerstedt,
“On the existence of executions of hybrid automata,” in
Proceedings of the 38th IEEE Conference on Decision and
Control. New York: IEEE Press, 1999, pp. 2249–2254.

[15] P. Collins, “Continuity and computability of reachable sets,”
Theoret. Comput. Sci., vol. 341, no. 1-3, pp. 162–195, 2005.

[16] M. Escardó, “Synthetic topology of data types and
classical spaces,” Electronic Notes in Theoretical Computer
Science, vol. 87, pp. 21–156, 2004. [Online]. Available:
www.elsevier.com/locate/entcs

[17] P. Taylor, “A lambda calculus for real analysis,” 2008,
http://www.monad.me.uk/.

[18] A. Puri, P. Varaiya, and V. Borkar, “Epsilon-approximation
of differential inclusions,” in Hybrid Systems III, ser. LNCS,
R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., vol. 1066.
Berlin: Springer, 1996, pp. 362–376.


